p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.144C24, C42.100C23, C24.511C23, C22.109C25, C4.832+ 1+4, C22.72- 1+4, (D4×Q8)⋊24C2, D4○3(C22⋊Q8), C4⋊Q8⋊96C22, D4⋊16(C4○D4), D4⋊6D4⋊28C2, D4⋊5D4⋊25C2, Q8⋊5D4⋊23C2, D4⋊3Q8⋊29C2, (C4×D4)⋊53C22, (C2×C4).99C24, (C4×Q8)⋊52C22, C4⋊D4⋊86C22, C4⋊C4.303C23, C22⋊Q8⋊38C22, C42⋊2C2⋊7C22, (C2×D4).481C23, C4.4D4⋊31C22, C22⋊C4.32C23, (C2×Q8).458C23, C42.C2⋊60C22, (C22×Q8)⋊36C22, C42⋊C2⋊46C22, C22.19C24⋊34C2, C22≀C2.30C22, (C23×C4).613C22, (C22×C4).378C23, (C2×C42).957C22, C22.45C24⋊10C2, C2.32(C2×2- 1+4), C2.43(C2×2+ 1+4), C22.33C24⋊8C2, (C22×D4).601C22, C22.D4⋊11C22, C22.50C24⋊28C2, C23.37C23⋊46C2, C23.33C23⋊29C2, C22.46C24⋊23C2, C22.36C24⋊20C2, C23.36C23⋊40C2, (C2×C4×D4)⋊95C2, (C2×C4⋊C4)⋊79C22, C4.282(C2×C4○D4), (C2×C22⋊Q8)⋊79C2, (C2×C4○D4)⋊38C22, C2.65(C22×C4○D4), C22.45(C2×C4○D4), (C2×C22⋊C4).385C22, SmallGroup(128,2252)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.144C24
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=b, g2=cb=bc, eae=ab=ba, ac=ca, ad=da, af=fa, ag=ga, ede=gdg-1=bd=db, be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, ef=fe, eg=ge, fg=gf >
Subgroups: 828 in 562 conjugacy classes, 392 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42.C2, C42⋊2C2, C4⋊Q8, C4⋊Q8, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C2×C4×D4, C23.33C23, C2×C22⋊Q8, C22.19C24, C23.36C23, C23.37C23, C22.33C24, C22.36C24, D4⋊5D4, D4⋊6D4, Q8⋊5D4, D4×Q8, C22.45C24, C22.46C24, D4⋊3Q8, C22.50C24, C23.144C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C25, C22×C4○D4, C2×2+ 1+4, C2×2- 1+4, C23.144C24
(1 27)(2 28)(3 25)(4 26)(5 18)(6 19)(7 20)(8 17)(9 31)(10 32)(11 29)(12 30)(13 21)(14 22)(15 23)(16 24)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 11)(2 10)(3 9)(4 12)(5 21)(6 24)(7 23)(8 22)(13 20)(14 19)(15 18)(16 17)(25 29)(26 32)(27 31)(28 30)
(2 28)(4 26)(6 17)(8 19)(10 30)(12 32)(14 22)(16 24)
(1 13 25 23)(2 16 26 22)(3 15 27 21)(4 14 28 24)(5 9 18 31)(6 12 19 30)(7 11 20 29)(8 10 17 32)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,18)(6,19)(7,20)(8,17)(9,31)(10,32)(11,29)(12,30)(13,21)(14,22)(15,23)(16,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,10)(3,9)(4,12)(5,21)(6,24)(7,23)(8,22)(13,20)(14,19)(15,18)(16,17)(25,29)(26,32)(27,31)(28,30), (2,28)(4,26)(6,17)(8,19)(10,30)(12,32)(14,22)(16,24), (1,13,25,23)(2,16,26,22)(3,15,27,21)(4,14,28,24)(5,9,18,31)(6,12,19,30)(7,11,20,29)(8,10,17,32)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,18)(6,19)(7,20)(8,17)(9,31)(10,32)(11,29)(12,30)(13,21)(14,22)(15,23)(16,24), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,11)(2,10)(3,9)(4,12)(5,21)(6,24)(7,23)(8,22)(13,20)(14,19)(15,18)(16,17)(25,29)(26,32)(27,31)(28,30), (2,28)(4,26)(6,17)(8,19)(10,30)(12,32)(14,22)(16,24), (1,13,25,23)(2,16,26,22)(3,15,27,21)(4,14,28,24)(5,9,18,31)(6,12,19,30)(7,11,20,29)(8,10,17,32) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,18),(6,19),(7,20),(8,17),(9,31),(10,32),(11,29),(12,30),(13,21),(14,22),(15,23),(16,24)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,11),(2,10),(3,9),(4,12),(5,21),(6,24),(7,23),(8,22),(13,20),(14,19),(15,18),(16,17),(25,29),(26,32),(27,31),(28,30)], [(2,28),(4,26),(6,17),(8,19),(10,30),(12,32),(14,22),(16,24)], [(1,13,25,23),(2,16,26,22),(3,15,27,21),(4,14,28,24),(5,9,18,31),(6,12,19,30),(7,11,20,29),(8,10,17,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4L | 4M | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | 2- 1+4 |
kernel | C23.144C24 | C2×C4×D4 | C23.33C23 | C2×C22⋊Q8 | C22.19C24 | C23.36C23 | C23.37C23 | C22.33C24 | C22.36C24 | D4⋊5D4 | D4⋊6D4 | Q8⋊5D4 | D4×Q8 | C22.45C24 | C22.46C24 | D4⋊3Q8 | C22.50C24 | D4 | C4 | C22 |
# reps | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 1 | 4 | 2 | 2 | 1 | 8 | 2 | 2 |
Matrix representation of C23.144C24 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 3 | 0 |
0 | 0 | 3 | 2 | 0 | 3 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 2 | 3 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 3 | 0 | 4 | 0 |
0 | 0 | 3 | 2 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 3 | 0 | 4 | 0 |
0 | 0 | 3 | 2 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,4,4,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,3,3,0,0,0,0,0,2,0,0,0,0,3,0,2,2,0,0,0,3,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,3,3,0,0,0,1,0,2,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,3,3,0,0,0,1,0,2,0,0,0,0,4,0,0,0,0,0,0,4] >;
C23.144C24 in GAP, Magma, Sage, TeX
C_2^3._{144}C_2^4
% in TeX
G:=Group("C2^3.144C2^4");
// GroupNames label
G:=SmallGroup(128,2252);
// by ID
G=gap.SmallGroup(128,2252);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,1430,570,1684,242]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=b,g^2=c*b=b*c,e*a*e=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,a*g=g*a,e*d*e=g*d*g^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations